Remote Sensing – Introduction

EMR Spectrum

Prof. D. Nagesh Kumar
Dept. of Civil Engg.
IISc, Bangalore – 560 012, India
URL: http://www.civil.iisc.ernet.in/~nagesh

Remote Sensing

Remote Sensing is the science and art of obtaining information about an object, area or phenomenon through the analysis of data acquired by a device that is not in physical contact with the object, area or phenomenon under investigation.

Examples
1. Eyes are living examples (EMR distribution)
2. Sonar (like bats): Acoustic wave distribution
3. Gravity Meter: Gravity force distribution

Evaluation

- Assignments (10%)
- Surprise Tests (15%)
- Class Test (15%)
- Seminar (20%)
- Final Test (40%)

Remote Sensing

Syllabus: Basic concepts of remote sensing; Airborne and space borne sensors; Digital image Processing; Geographic Information System; Applications to rainfall-runoff modeling, Watershed management, Irrigation management, soil moisture estimation, Drought and Flood monitoring, Environment and ecology; Introduction to Microwave remote sensing and Global Positioning System (GPS); Digital Elevation Modeling; Use of relevant software for Remote sensing and GIS applications.

References:
1. Remote Sensing and Image Interpretation
2. Remote Sensing - Principles and Interpretation
3. An Introduction to Geographical Information Systems
4. Remote sensing in water resources management: The state of the art

http://www.civil.iisc.ernet.in/~nagesh/rs_gis.htm
Remote Sensing

DATA ACQUISITION → DATA ANALYSES

- Sensing systems
- Data products
- Interpretation procedures
- Information products

Electromagnetic Wave

Sinusoidal Electric Wave (E) \[\lambda = \frac{c}{f} \]

Magnetic Wave (M) \[\lambda = \text{wave length (\(\mu\)m)} \]

Right angles to the source \[c = \text{Celerity (3x10^8 m/s)} \]

EMR Spectrum

- EMR Spectrum

EMR

Diagram of EM waves at different frequencies.
EMR Energy

- Energy of a quantum
 \[E = h f \]
 - \(E \) in Joules (J)
 - \(h \) – Planck’s constant, \(6.626 \times 10^{-34} \) J sec
 - \(f \) – Frequency

- Energy of a quantum is inversely proportional to its wavelength
- The low energy content of long wavelength means that, in general, systems operating at long wavelength must ‘view’ large areas of the earth in order to obtain a detectable signal

EMR Source

- Sun is the primary source
- All matter at temperature above absolute zero (0°K or −273° C) continuously emit EMR
- Energy emitted is, among other things, a function of surface temperature.
- Stefan-Boltzmann Law (Black body)
 \[W = \sigma T^4 \]
 - \(W \) – Total radiant emittance in W m\(^{-2}\)
 - \(\sigma \) – Stefan-Boltzmann constant, \(5.6697 \times 10^{-8} \) Wm\(^{-2}\)K\(^{-4}\)
 - \(T \) – Absolute temperature (°K) of the emitting material
- Energy from an object varies as \(T^4 \)
 - Increases rapidly with increase in Temperature

A black body is a hypothetical ideal radiator that totally absorbs and re-emits all energy incident upon it

Energy Interactions in the Atmosphere

- All radiation detected by sensors passes through some distance of the atmosphere

Scattering (Contd..)

- **Scattering**
 - Scattering is unpredictable distribution of radiation by particles in the atmosphere
 - *Rayleigh scatter* is common when radiation interacts with particles which are smaller in diameter than the wavelength.
 - Inversely proportional to fourth power of wavelength
 - Short wavelengths get scattered more
 - A blue sky is a manifestation of Rayleigh scatter
 - Rayleigh scatter is primary cause for ‘haze’ in imagery (results in blush-gray photos) (Blue Filter)

- **Mie Scatter** is common when radiation interacts with atmospheric particles diameters which are essentially equal to the wavelength.
 - Water vapour and dust are major causes of Mie scatter
 - Influences longer wavelengths when compared to Rayleigh scatter
 - Mie scatter is significant in overcast conditions

- Nonselective scatter is common when radiation interacts with particles which are much larger in diameter than the wavelength.
 - Water droplets (5-100 µm) cause such scatter
 - Scatter all visible and reflected IR wavelengths
 - Fog and Clouds appear white
Absorption

- In contrast to scatter, atmospheric absorption results in effective loss of energy to atmospheric constituents.
 - Most efficient absorbers are water vapour, carbon dioxide and ozone.
 - As absorption occurs in specific wavelengths, they strongly influence “where we look” spectrally with any sensor.
 - Wavelength ranges in which the atmosphere is particularly transmissive of energy are called Atmospheric Windows.

Spectral Characteristics …

- Spectral sensitivity range of eye coincides with an atmospheric window and peak level of energy from the sun.
- Emitted heat energy from the earth, is sensed through the windows at 3 – 5 µm and 8 – 11 µm using Thermal scanners.
- Multi Spectral Sensors sense simultaneously through multiple, narrow wavelength ranges that can be located at various points in visible through the thermal spectral regions.
- Radar and Passive microwave systems operate through a window in the 1 mm to 1 m region.

Sensor Selection

- Spectral sensitivity of the sensors available.
- Presence or absence of atmospheric windows in the spectral range(s) in which one wishes to sense.
- Source, magnitude, and spectral composition of the energy available in these ranges.
- Manner in which the energy interacts with the features under investigation.