AN INTEGRATED MODEL FOR OPTIMAL RESERVOIR OPERATION FOR IRRIGATION OF MULTIPLE CROPS

S. Vedula 1 and D. Nagesh Kumar 2

ABSTRACT

An integrated model is developed, based on seasonal inputs of reservoir inflow and rainfall in the irrigated area, to determine the optimal reservoir release policies and irrigation allocations to multiple crops. The model is conceptually made up of two modules. Module 1 is an intraseasonal allocation model to maximize the sum of relative yields of all crops, for a given state of the system, using linear programming (LP). The module takes into account reservoir storage continuity, soil moisture balance and crop root growth with time. Module 2 is a seasonal allocation model to derive the steady state reservoir operating policy using stochastic dynamic programming (SDP). Reservoir storage, seasonal inflow, and seasonal rainfall are the state variables in the SDP. The objective in SDP is to maximize the expected sum of relative yields of all crops in a year. The results of module 1 and the transition probabilities of seasonal inflow and rainfall form the input for module 2. The use of seasonal inputs coupled with the LP-SDP solution strategy in the present formulation facilitates in relaxing the limitations of an earlier study, while affecting additional improvements. The model is applied to an existing reservoir in Karnataka State, India.

INTRODUCTION

The objective of the present study is to develop a mathematical programming model to determine the steady state optimal operating policy and the associated optimal crop water allocations to each crop for a single-purpose irrigation reservoir. The model should take into account the stochasticity of reservoir inflow and rainfall in the irrigated area, intraseasonal competition for water among multiple crops, soil moisture dynamics for each cropped area, the heterogeneous nature of the soil, and crop response to the level of irrigation applied. The model should be applicable to making reservoir release and irrigation allocation decisions in real time. The present paper is relevant in this context, and the issues involved pose a challenge even in the limited scope of the problem.

In a series of articles Dudley and others (1971a, b, 1972) and Dudley (1972) dealt with modelling for irrigation planning with a hierarchy of short, intermediate and long-run decisions to maximize the net benefits from the use of irrigation water. A combination of stochastic dynamic programming (SDP) and simulation was used as a solution technique. An integrated intraseasonal and interseasonal SDP model was developed by Dudley and Burt (1973). All these models are essentially single crop models. Relaxing the assumption of a single decision maker in communicating the stochastic nature of supplies and demands between the reservoir and farm managers is addressed in two different approaches, namely, volume sharing of reservoir (Dudley 1988) and capacity sharing of reservoir (Dudley and Musgrave 1988).

Dudley and others (1976) developed a hierarchy of models to aid management and planning decisions in multicrop water resources systems. By using the reservoir level transition probabilities and the functional relationship between net revenues and reservoir releases derived by linear programming, optimal annual reservoir releases as functions of beginning-year reservoir level were derived by dynamic programming. Crop water requirements were assumed to be deterministic. Recently, Dudley and Scott (1993) developed methods and models for determining how large a farm ought to be under the institutional arrangement known as “capacity sharing.” In these models it is presumed that the irrigator has a large tract of land with choices of cropping and of “abandoning” a part of it to rain-fed status, if doing so is found to be more profitable. The situation, however, in developing countries is quite different in the sense that the land holdings are relatively very small, and there is little choice of the cropping pattern, as this is by and large fixed or imposed by the project authorities. In addition, in the tropics, even the crop seasons are fixed because of the monsoon climatology. What are most necessary in such situations are multicrop models which optimize the crop output through the allocation of reservoir water. A literature search reveals that very little work has been done in this area. The uncertainties in reservoir inflow, rainfall, irrigation demand and soil moisture together have not been overlooked.

1 Department of Civil Engineering, Indian Institute of Science, Bangalore 560 012, India. (E-mail: svedula@civil.iisc.ernet.in)
2 Department of Civil Engineering, Indian Institute of Technology, Kharagpur 721 302, India.

Reprinted with permission of the American Geophysical Union from Water Resources Research, Vol. 32, No. 4, April 1996.
been considered in a single model thus far. This paper addresses these issues and presents an improvement of the recent work of Vedula and Mujumdar (1992).

Vedula and Mujumdar (1992) developed a model to obtain an optimal steady state reservoir operating policy for irrigation of multiple crops with stochastic inflows and crop water demands (implicitly stochastic) using stochastic dynamic programming. The model considers reservoir inflow, storage and soil moisture in the irrigated area as state variables. The study, the first of its kind reported in the literature, has two phases. In the first phase, their model uses deterministic dynamic programming (DP) and allocates a given amount of water among all crops to optimize the impact of the allocation within a given period. This allocation is determined for all possible supplies in a given period and for all periods in a year. In the second phase an SDP model evaluates the system performance over all periods to optimize the overall impact of the allocations over a full year. The main contribution of the paper lies in the integration of the decision-making mechanism at the reservoir level and the farm level. This study, however, has some limitations: (1) the averaging of the soil moisture among all crops at the beginning of the period; (2) rainfall in the irrigated area being considered deterministic; and (3) the amount of allocation to a particular crop in a given period, not explicitly taking into account the allocations received by the crop in the earlier periods, due to a limitation in the technique used.

The present study removes the limitations mentioned above and provides improved features over the earlier work of Vedula and Mujumdar (1992). The improvement is brought out by a change in the model formulation and methodology. Seasonal values of inflow and rainfall are considered rather than 10-day values. A linear programming-SDP (LP-SDP) approach is used instead of a DP-SDP approach. This facilitated removing the first and third limitations, stated above. The second limitation is removed by considering the rainfall in the irrigated area as stochastic. Evapotranspiration, however, is considered deterministic in both studies.

There are other conceptual improvements in the present study as well. The soil moisture in module 1 is not restricted to any set of discrete values as in the earlier study (Vedula and Mujumdar 1992). The data requirements are made relatively simple, and the scope for bias in estimating the data needs for real time operation is reduced. The earlier study considered a year as a single season consisting of thirty-six 10-day periods; therefore, the model requires forecasts of 10-day flows for model use in real time operation. The present model, however, considers a year consisting of two seasons, the monsoon (Kharif) season and the non-monsoon (Rabi) season, with the same total of thirty-six 10-day intraseasonal periods. The advantage here is that only seasonal values of inflow and rainfall need be considered. This helps the irrigation managers in planning their operations in advance of a season. The SDP formulation in the earlier study is based on transitions of 10-day values of rainfall (being deterministic), whereas the present study is based on transitions of seasonal values of inflow and rainfall (both being stochastic). Both studies derive the steady state operating policy while maximizing the expected annual sum of relative crop yields. Seasonal forecasts are considered relatively more reliable and more easily obtainable than short-term forecasts of 10-days in aiding model application in real time. The strategy of using seasonal inputs together with the LP-SDP formulation facilitates the accounting of soil moisture balance and allocation of the irrigation water individually for each crop in each period, looking at the entire crop season. This was not possible in the earlier study. Estimate of seasonal rainfall in advance of a season can usually be obtained from a meteorological office, while any conventional forecasting model may be used to estimate the seasonal inflow. The seasonal inflow and rainfall values are disaggregated into those of 10-day intraseasonal periods using a simple disaggregation model.

The model and its application are presented briefly in the following sections. The details are reported by Nagesh Kumar (1992).

RESERVOIR OPERATION MODEL

The model formulation conceptually consists of two modules. Module 1 is intraseasonal modelling for allocation decisions within a season for given seasonal inputs. Module 2 is seasonal modelling for decisions over the seasons of a year resulting in the maximization of expected annual system performance. LP is used in module 1, and SDP is used in module 2 as optimization tools.

LP is used in module 1 to maximize the sum of relative yields of all crops for a given state of the system (defined by reservoir storages at the beginning and end of the season, seasonal inflow, and seasonal rainfall). Requirements of reservoir water balance in each period and soil moisture balance for each crop in each period form the constraints. SDP is used in module 2 to derive the steady state operating policy for the reservoir. The results of module 1 and the seasonal transition probabilities of reservoir inflow and those of rainfall form the input to module 2. Figure 1 shows the schematic diagram of the reservoir operation model developed in the present study.

The intraseasonal allocation model (module 1) has the capability to take into account (1) various crops with different crop durations staggered within the season; (2) the heterogeneity of soil types in the irrigation area; (3) soil moisture balance for each crop for each soil type; (4) crop root growth with time, as may be specified for each crop; and (5) specified irrigation policy for the crops. A linear crop root growth is assumed in the present model.
The irrigation policy adopted is to allocate irrigation water to a crop to bring up the soil moisture in the cropped area as close to the field capacity as possible, whenever the actual soil moisture falls below the field capacity.

The seasonal allocation model (module 2) considers the stochasticity of seasonal inflow into the reservoir and rainfall over the irrigated area commanded by the reservoir, hereinafter referred to as the reservoir command. The reservoir inflow and the rainfall in the reservoir command are assumed to be independent, as the physiographic and meteorological characteristics of the watershed would very often be quite different from those of the reservoir command.

As for crop water demands, the stochastic nature of the demands is implicitly taken into account while determining the irrigation allocations for each crop through soil moisture balance in which rainfall stochasticity is considered. The crops, crop calendar, and the cropped areas are assumed fixed in the model. In modelling for multiple crops, the time period (intraseasonal period) is chosen such that the lengths of growth stages of all crops are integral multiples of the chosen time period, which is 10 days in the present case.

Intraseasonal allocation model

The intraseasonal model is solved for all possible combinations of input states. The inputs are the reservoir storages at the beginning and end of the season, seasonal inflow and seasonal rainfall. The intraseasonal period values of inflow and rainfall are obtained from the seasonal inflow and rainfall, using a simple disaggregation model. The disaggregation model used is based on the conditional expectations of intraseasonal period values for a given

seasonal value. These are derived from historical data or from synthetically generated data in case the historical data are not of sufficient length. The various aspects of the intraseasonal model are described next.

Crop yield response

The following additive form of the crop response function (Doorenbos and Kassam 1979) is used for each crop in the present study:

\[\frac{\gamma}{\gamma_{\max}} = 1 - \sum_{t=1}^{N_{GS}} k_y(t - AET_{PET})_t \]

where \(\gamma \) is the actual crop yield, \(\gamma_{\max} \) is the maximum yield, \(g \) is the growth stage index, \(N_{GS} \) is the number of growth stages within the growing season of a crop, \(k_y \) is the yield response factor for the growth stage \(g \), \(AET \) is the actual evapotranspiration, and \(PET \) is the potential evapotranspiration.

Crop root growth

A crop is assumed to have five growth stages: establishment, vegetative, flowering, yield formation and ripening. The root is assumed to grow linearly from zero depth at the beginning of the crop season to its full value at the end of the flowering stage and remain constant thereafter until the end of the crop season. The root depth in any period is taken as the average of the root depths at the beginning and end of the period.

Objective function

The sum of the relative yields of all crops in the season is taken as a measure of the relative crop yield for the season, as the formulation is for multiple crops.

The following objective function for the allocation problem is thus considered:

\[
\text{Max} \sum_{c=1}^{NC} \left[1 - \sum_{t=1}^{N_{GS}} k_y(t - AET_{PET})_t \right]
\]

where \(c \) is the crop index, \(k_y(c) \) is the yield response factor for the growth stage \(g \) of the crop \(c \) (which in reality varies within the growth stage with time but is assumed to be the same in each of the periods \(t \) within the growth stage \(g \), following Bras and Cordova (1981), Rao and others (1990), and Vedula and Mujumdar (1992)), and \(NC \) is the number of crops.

The objective function will be at its maximum possible value of 1 * NC when the allocation of available water to individual crops is such that AET = PET for each crop in each period. Whenever this is not possible, the irrigation allocation is made such that the total relative yield is maximized.

Potential evapotranspiration

PET, or the crop consumptive use, in any period \(t \) is determined by
\[\text{PET}_i = k \text{ET}'_o \]
where \(k \) is the crop factor, and \(\text{ET}'_o \) is the reference evapotranspiration, determined by

\[\text{ET}'_o = k_{\text{pan}} \text{ET}'_{\text{pan}} \]
where \(k_{\text{pan}} \) is the pan coefficient, and \(\text{ET}'_{\text{pan}} \) is the measured pan evaporation for the reservoir command for period \(t \).

Actual evapotranspiration

In the present model it is assumed that \(\text{AET} = \text{PET} \) only when the soil moisture is at field capacity and that \(\text{AET} \) decreases linearly with the decrease in the soil moisture from the field capacity (Doorenbos and Kassam 1979).

The various assumptions and the constraints of the intraseasonal model are presented in the following sections.

Reservoir water balance

The reservoir water balance is governed by the reservoir storage continuity equation:

\[S_i + Q_i - R_i - L_i - \text{OVF}_i = S_{i+1} \]
where \(S \) is the active storage at the beginning of the period \(t \), \(Q_i \) is the reservoir inflow during the period \(t \), \(R_i \) is the reservoir release (for irrigation) in the period \(t \), \(L_i \) is the evaporation loss from the reservoir in period \(t \), and \(\text{OVF}_i \) is the overflow from the reservoir during the period \(t \).

The evaporation loss, \(L_i \), in each period, \(t \), may be approximated following Loucks and others (1981). The storage continuity equation (5) in the light of this approximation becomes

\[(1 - a_i) S_i + Q_i - R_i - \text{OVF}_i - A_i e_i = (1 + a_i) S_{i+1} \]
where

\[a_i = A_i e_i / 2 \]
and \(A_i \) is the water spread area corresponding to the dead storage volume, \(A_i \) is the water spread area per unit active storage volume above the dead storage level, and \(e_i \) is the evaporation rate in period \(t \).

\[X_i, \] the total amount of irrigation water available at the farm level, is given by

\[X_i = \eta R_i \]
where \(\eta \) is the conveyance efficiency.

In (6), \(S_i, Q_i, R_i \) and \(\text{OVF}_i \) are in volume units, whereas \(e_i \) is in depth units. Reservoir storage in any period should not exceed the capacity (active), \(S_{\text{max}} \).

\[S_i \leq S_{\text{max}} \]
\[\forall t \]
(9)

The intraseasonal allocation model requires the storages at the beginning and end of the season \(T \) to be specified. The specified values are respectively equal to the representative values of the storage class intervals at the corresponding times.

Soil moisture balance

In the beginning of the season, soil moisture is assumed to be known. Here it is assumed to be at field capacity for all soils and crops:

\[\text{SM}'_i = \text{SM}'_{\text{max}} \]
\[\forall c \]
(10)

where \(\text{SM}'_i \) is the available soil moisture in depth units per unit root depth (L/L units) at the beginning of the first period \(i = 1 \) for the crop \(c \), and \(\text{SM}'_{\text{max}} \) is the maximum available soil moisture at field capacity for crop \(c \) (L/L units).

It is also assumed that the soil moisture is at the field capacity in the incremental depth over which the crop root grows during each period. The soil moisture balance equation for a given crop \(c \) and period \(t \) is given by

\[\text{SM}'_{i+1} = \text{SM}'_i \]
\[D'_c + IR_i + x'_i - \text{AET}'_c \]
\[+ \text{SM}'_{\text{max}} (D'_c - D_c) - D'_c \]
\[\forall c \text{ and } t \]
(11)

where \(\text{SM}'_c \) is the available soil moisture at the beginning of the period \(t \) for the crop \(c \) (L/L units), \(D'_c \) is the average root depth of crop \(c \) in period \(t \), \(IR_i \) is the rainfall in period \(t \) in depth units, \(x'_i \) is the irrigation water allocated to crop \(c \) in period \(t \) (depth units), \(\text{AET}'_c \) is the actual evapotranspiration during period \(t \) for crop \(c \) (depth units), and \(D'_c \) is the deep percolation for crop \(c \) in period \(t \) (depth units).

The available soil moisture in any period \(t \) for crop \(c \) cannot exceed the value that corresponds to field capacity, \(\text{SM}'_{\text{max}} \):

\[\text{SM}'_i \leq \text{SM}'_{\text{max}} \]
\[\forall c \text{ and } t \]
(12)

The upper bound for \(\text{AET} \) is \(\text{PET} \), and therefore

\[\text{AET}'_c \leq \text{PET}'_c \]
\[\forall c \text{ and } t \]
(13)

where \(\text{PET} \) is the potential evapotranspiration of crop \(c \) in period \(t \).

The linear relationship between \(\text{AET}, \text{PET} \) and the soil moisture is

\[\text{AET}'_c = \frac{\text{SM}'_{\text{max}} D'_c + IR_i + x'_i}{\text{SM}'_{\text{max}} D'_c} \text{PET}'_c \]
\[\forall c \text{ and } t \]
(14)
Allocation constraints

To assure that the reservoir release is properly allocated for different crops and periods within a growth stage, the following assumptions and constraints are used in the intraseasonal allocation model.

The crop yield function (1) is a function of AET. AET is a function of the irrigation allocation in a given growth stage, without regard to the distribution of this allocation among the time periods within the growth stage. To avoid possible undue concentration (of the allocations) in some of the periods, the irrigation water within a growth stage is assumed to be uniformly distributed among the periods of the growth stage.

\[X_{c} = \frac{RG_{g}}{NP_{g}} \quad \forall \ c \text{ and } t \] \hspace{1cm} (15)

except for \(t \) belonging to \(g = 1 \), where \(RG_{g} \) is the irrigation allocation for the growth stage \(g \) of the crop \(c \) (depth units), and \(NP_{g} \) is the number of periods in the growth stage \(g \).

The uniform distribution assumption is relaxed for the first growth stage of all crops to avoid an anomaly. Because the soil moisture is assumed to be at field capacity at the beginning of the first period of the first growth stage, there will not normally be any irrigation requirement during the first period, whereas irrigation may be required in subsequent periods. The uniform distribution assumption for the first growth stage is relaxed to accommodate this situation.

In any period the total water allocated to all crops should equal the water available for allocation, \(X_{c} \).

\[\sum_{c} x_{c} \cdot \text{AREA} = X_{c} \quad \forall \ t \] \hspace{1cm} (16)

where AREA is the area (assumed fixed) irrigated under crop \(c \).

For any growth stage of any crop, the total allocation made should equal the sum of allocations made in all the periods of that growth stage.

\[\sum_{r \in g} x_{r} = RG_{g} \quad \forall \ c \text{ and } g \] \hspace{1cm} (17)

The model should also take into account crops whose durations are longer than a season. In this case a convenient way is to specify that the end-of-season soil moisture should be at field capacity (to be consistent with the assumption of the soil moisture being at field capacity at the beginning of each season for all crops). The model forces irrigation to satisfy this requirement.

To ensure that soil moisture reaches field capacity before deep percolation occurs, and that the reservoir does not spill before reaching its capacity, a penalty term is added to the simple objective function (2) as follows:

\[\text{Max} \sum_{c=1}^{NC} \left[1 - \sum_{r=1}^{NGS} \left(1 - \sum_{g \in \mathcal{G}_{r}} \frac{AET_{r}}{PET_{r}} \right) \right] \]

\[- M \left(\sum_{r} \sum_{g \in \mathcal{G}_{r}} DP_{r} + \sum_{r} OV_{r} \right) \] \hspace{1cm} (18)

where \(M \) is arbitrarily large.

The modified objective function (18) plus the constraints through (17) constitutes the LP model. Figure 2 shows a block diagram of the intraseasonal allocation model with input and output details.

The model gives solution for each season (7) for a given reservoir storage class (k), seasonal inflow class (i), seasonal rainfall class (m), and final storage class (l). The

![Figure 2. Block diagram for the intraseasonal allocation model (module 1)](image)
maximized relative yield is denoted as \(B(k, i, l, m, T) \). The model is solved for all feasible combinations of \(k, i, l, m, \) and \(T \). The model solution gives for each period within the season, optimal irrigation allocation to each crop, the reservoir release, the reservoir storage at the beginning of the period, the soil moisture at the beginning of the period for each crop, deep percolation from each crop area, and evaporation loss from the reservoir.

Seasonal allocation model

The seasonal allocation model (module 2) gives the optimal steady state operating policy of the reservoir over the seasons. SDP is used for this purpose. The derived steady state operating policy specifies optimal end-of-season reservoir storage, for given conditions of initial reservoir storage, seasonal inflow, and seasonal rainfall. The policy implicitly specifies the optimal irrigation allocations in each of the intraseasonal periods for each of the crops.

State variables and discretization

Stochastic variables in the seasonal allocation model include seasonal inflow to the reservoir, seasonal rainfall in the reservoir command, and reservoir storage. Seasonal inflow and seasonal rainfall are each assumed to constitute a stationary Markov process. The model incorporates the stochasticity of the variables through their transition probabilities.

Each state variable is discretized into different classes (also called class intervals) in the SDP model. All values of the variable falling in a particular class (in model application) are represented by a single discrete value (within the class) which is taken to be its representative value (mean in the present case).

Recursive relation

Backward recursion is used in the present case to solve the SDP model. The study is set to start from the last season of some arbitrary year chosen long enough in the future to enable the derivation of a steady state operating policy from the model solution (Loucks and others 1981).

Let \(N \) define the number of seasons remaining and \(f^*_T(k, i, m) \) represent the total expected value of the system performance with \(N \) seasons to go, including the current season \(T \), given that the initial storage is \(S^*_k \), the inflow is \(I^* \), and the rainfall in the reservoir command is \(R^* \), in the current season \(T \). With only one season remaining (\(N = 1 \) and \(T = T_L \), the last season),

\[
f^*_T(k, i, m) = \max \left\{ B(k, i, l, m, T_L) \right\} \quad \forall \ k, i, m \quad (19)
\]

For \(N = 2 \) and \(T = T_L - 1 \),

\[
f^*_L(k, i, m) = \max \left(B(k, i, l, m, T_L - 1) + \sum_j \sum_n P_{ij}^{T_L-1} P_{mn}^{T_L} f^*_T(l, j, n) \right) \quad \forall \ k, i, m \quad (20)
\]

where \(P_{ij}^{T_L-1} \) is the transition probability of seasonal inflow from class \(i \) in season \(T_L - 1 \) to class \(j \) in season \(T_L \), and \(P_{mn}^{T_L} \) is the transition probability of seasonal rainfall from class \(m \) in season \(T_L - 1 \) to class \(n \) in season \(T_L \).

In general, for stage \(N \) and season \(T \), \((20) \) can be generalized as

\[
f^*_T(k, i, m) = \max \left(B(k, i, l, m, T) + \sum_j \sum_n P_{ij}^T P_{mn} f^*_T(l, j, n) \right) \quad \forall \ k, i, m \quad (21)
\]

In \((21) \) \(T \) is reckoned 1, 2, ..., \(T_L \) in the forward direction, and \(N_i \), the stage number, is reckoned 1, 2, ..., backward from the last season. The use of both indices, \(T \) and \(N_i \), facilitates tracing the stage-by-stage movement in the dynamic program.

The recursive equations are solved for each season. The policy \(l(k, i, m, T) \), gives the end-of-period storage class, \(l \), as a function of \(k, i, m, \) and \(T \). This policy will relatively quickly repeat itself in successive years. The steady state policy is reached when this occurs, implying that the expected annual performance \(f^*_{A_{\infty}}(k, i, m) - f^*(k, i, m) \) is constant for all \(k, i, m \) and for each season \(T \), over a year, where \(NS \) is the number of seasons in the year.

The optimal final storage class, \(l^* \), is thus obtained for given \(k, i, m, \) and \(T \) from the steady state operating policy. Associated with the optimal final storage class in a season are optimal intraseasonal crop allocations in each growth stage for each crop in each period. Figure 3 shows a block diagram of the seasonal allocation model.

Figure 3. Block diagram of the seasonal allocation model (module 2)
Table 1. Typical output from intraseasonal allocation model for the Kharif season

<table>
<thead>
<tr>
<th>Crop</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
<td>27.6</td>
<td>27.6</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.3</td>
<td>0.0</td>
<td>10.1</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>50</td>
<td>46</td>
<td>96</td>
<td>209</td>
<td>312</td>
<td>378</td>
<td>457</td>
<td>598</td>
<td>673</td>
<td>718</td>
<td>759</td>
<td>805</td>
<td>852</td>
<td>870</td>
</tr>
<tr>
<td></td>
<td>Maize</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Pulses</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Sorghum</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Cotton</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>AET Value for Each Period for Each Crop, mm</td>
<td>13.1</td>
<td>13.1</td>
<td>44.3</td>
<td>37.7</td>
<td>38.8</td>
<td>56.6</td>
<td>52.1</td>
<td>42.6</td>
<td>44.0</td>
<td>39.4</td>
<td>39.4</td>
<td>23.7</td>
<td>23.7</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td>Pulses</td>
<td>9.1</td>
<td>9.1</td>
<td>31.3</td>
<td>26.6</td>
<td>34.3</td>
<td>35.3</td>
<td>32.4</td>
<td>33.6</td>
<td>34.7</td>
<td>34.7</td>
<td>34.7</td>
<td>34.7</td>
<td>34.7</td>
<td>34.7</td>
</tr>
<tr>
<td></td>
<td>Sorghum</td>
<td>10.4</td>
<td>10.4</td>
<td>39.2</td>
<td>33.3</td>
<td>34.2</td>
<td>34.2</td>
<td>49.9</td>
<td>54.0</td>
<td>57.0</td>
<td>55.2</td>
<td>55.2</td>
<td>22.8</td>
<td>22.8</td>
<td>22.8</td>
</tr>
<tr>
<td></td>
<td>Deep Percolation Value for Each Period for Each Crop, mm</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Pulses</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Sorghum</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Cotton</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Overfall from the Reservoir</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Evaporation Loss from the Reservoir</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Here $k = 2, i = 2, l = 15, m = 4, T = 1$, $B(k, i, l, m, T) = 3.994$, $S_i^j = 17.0$ Mm3, and $S_i^{15} = 842$ Mm3.

Real time operation

The reservoir operation model developed can be used in real time operation. Although the storage at the beginning of a given season is known, the inflow and rainfall during the season are not known a priori. Therefore a forecast of the seasonal inflow and rainfall for the current season is required at the beginning of the season itself. With these inputs, optimal end-of-period storages and the associated releases for any given period are obtained from the steady state policy derived from the reservoir operation model. Details of the model application in real time are reported by Nagesh Kumar (1993).

Discussion of model features

The primary thrust of the work lies in the formulation of a stochastic multicrop model reflecting field conditions to the best possible extent. The existing models were examined, and a new mathematical programming model with conceptual improvements is presented. These improvements include consideration of (1) the stochastic nature of inflow and rainfall, (2) soil moisture balance for each crop taking crop growth into account, (3) the heterogeneity of soils, and (4) irrigation allocation to each crop in each period, keeping the entire crop season in view. All of these features together are not considered in any of the existing models. The use of seasonal inputs coupled with the LP-SDP solution strategy in the present formulation facilitated in overcoming the limitations of the earlier study by Vedula and Mujumdar (1992), while effecting improvements. The model application presented below shows how it works and what results can be expected of it.

MODEL APPLICATION

Applicability of the developed model is demonstrated for the case of the Malaprabha single-purpose irrigation reservoir in the Krishna basin of Karnataka State, India (the same case used in the earlier study of Vedula and Mujumdar (1992)).

Ten-day periods were considered in the study. The water year, which begins on 1 June and ends on 31 May, is divided into thirty-six 10-day periods, with three periods in each month. For modelling purposes, a year is divided into two seasons: season 1 (periods 1-15; Kharif (monsoon) season) and season 2 (periods 16-36; Rabi season, including summer). The last five periods of the year, that is, periods 31 through 36, have no irrigation activity.

Daily inflows for a period of 38 years, from June 1951 to May 1989, are available. Daily rainfall data are available for a period of 88 years from June 1901 to May 1989 at different locations in the reservoir command. The spatial averages of daily rainfall for the reservoir command were computed using Thiessen weights for the gauging
Table 2. Typical output from intraseasonal allocation model for the Rabi season

<table>
<thead>
<tr>
<th>Crop</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorghum</td>
<td>4.3</td>
<td>4.3</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
<td>13.6</td>
<td>13.6</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Pulses</td>
<td>1.9</td>
<td>1.9</td>
<td>2.5</td>
<td>2.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Wheat</td>
<td>8.7</td>
<td>17.3</td>
<td>17.3</td>
<td>17.3</td>
<td>26.9</td>
<td>26.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Safflower</td>
<td>2.2</td>
<td>4.4</td>
</tr>
<tr>
<td>Cotton</td>
<td>28.3</td>
<td>28.2</td>
<td>28.2</td>
<td>17.8</td>
<td>0.0</td>
</tr>
<tr>
<td>AET Value for Each Period for Each Crop, mm</td>
<td>13.6</td>
<td>13.6</td>
<td>25.6</td>
<td>23.3</td>
<td>24.1</td>
<td>38.2</td>
<td>40.4</td>
<td>29.0</td>
<td>30.0</td>
<td>30.0</td>
<td>31.8</td>
<td>32.8</td>
<td>18.6</td>
<td>18.6</td>
<td>18.6</td>
<td>18.6</td>
</tr>
<tr>
<td>Sorghum</td>
<td>11.9</td>
<td>11.9</td>
<td>21.1</td>
<td>18.7</td>
<td>24.1</td>
<td>24.9</td>
<td>25.3</td>
<td>27.2</td>
<td>28.1</td>
<td>48.3</td>
<td>37.8</td>
<td>37.8</td>
<td>37.8</td>
<td>37.8</td>
<td>37.8</td>
<td>37.8</td>
</tr>
<tr>
<td>Safflower</td>
<td>27.7</td>
<td>27.3</td>
<td>17.3</td>
<td>24.9</td>
<td>38.6</td>
<td>39.8</td>
<td>28.3</td>
<td>24.8</td>
<td>23.3</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Soil Moisture at the Beginning of Each Period for Each Crop, mm</td>
<td>42.6</td>
<td>42.6</td>
<td>38.9</td>
<td>38.2</td>
<td>38.6</td>
<td>28.1</td>
</tr>
<tr>
<td>Sorghum</td>
<td>2.5</td>
</tr>
<tr>
<td>Pulses</td>
<td>2.5</td>
</tr>
<tr>
<td>Wheat</td>
<td>2.5</td>
</tr>
<tr>
<td>Safflower</td>
<td>2.5</td>
</tr>
<tr>
<td>Cotton</td>
<td>0.0</td>
</tr>
<tr>
<td>Deep Percolation Value for Each Period for Each Crop, mm</td>
<td>0.0</td>
</tr>
<tr>
<td>Sorghum</td>
<td>0.0</td>
</tr>
<tr>
<td>Pulses</td>
<td>0.0</td>
</tr>
<tr>
<td>Wheat</td>
<td>0.0</td>
</tr>
<tr>
<td>Safflower</td>
<td>0.0</td>
</tr>
<tr>
<td>Cotton</td>
<td>0.0</td>
</tr>
<tr>
<td>Overflow From the Reservoir in Each Period, Mm^3</td>
<td>4.9</td>
<td>4.5</td>
<td>4.0</td>
<td>3.0</td>
<td>2.4</td>
<td>2.1</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
<td>1.7</td>
<td>1.9</td>
<td>1.9</td>
<td>2.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Here $k = 13, t = 1, i = 1, m = 1, T = 2, B(t, 1, i, m, T) = 4.376, S_4^5 = 760.5 Mm^3, and $S_1^{15} = 2.5 M$m^3$.

There are three crops within the Kharif season, four within the Rabi season, and a two-season crop starting in the Kharif season and ending in the Rabi season. The principal crops, their areas and the crop calendar are as reported by Vedula and Mujumdar (1992). Ten-day streamflows were generated using the Thomas-Fiering model and discretized into five class intervals. Seasonal inflow transition probabilities were obtained from the generated streamflow data. The seasonal rainfall was discretized into five class intervals. The seasonal rainfall transition probabilities were determined from the historical data of 88 years. The reservoir storage is discretized into 15 class intervals.

The disaggregation scheme for inflows was based on the conditional expectations derived from synthetic streamflows; that is, the inflow in an intraseasonal period (in a given season) is taken as its expected value in that period, given the seasonal inflow. Seasonal rainfall is disaggregated into its intraseasonal values, in a similar manner using the historical data.

Tables 1 and 2 show typical results of the intraseasonal allocation model for the Kharif and Rabi seasons, respectively. Each table shows the crops grown in the respective seasons. The results of the intraseasonal allocation model for each season are tabulated as per the output format shown in figure 2. It can be seen in table 3 that the end-of-period soil moisture reached field capacity (2.5 mm/cm) in those periods in which deep percolation was positive, as should be the case. This has been made possible by penalizing the deep percolation in the objective function (18).

The results of the intraseasonal model are fed into the seasonal allocation model. Values of T^*, the optimal storage class at the end of the season, for all combinations of $k, i, m, and T$ were obtained and tabulated. Examples of this tabulation are given in tables 3 and 4. Table 3 gives the optimal end-of-period storage classes and the objective function values (maximized relative crop yields) for $i = 1$ for all combinations of k and m for the Kharif season (season 1), and table 4, for the Rabi season (season 2). It may be noted that the objective function value in the Rabi season is higher than that in the Kharif season for some combinations of state variables because the Rabi season has one additional crop in it. The storage at the end of the Kharif (monsoon) season tends to be as high as possible to accommodate the irrigation demands of the
Table 3. Optimal steady state operating policy for the Kharif season

<table>
<thead>
<tr>
<th>Storage State, k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1</td>
<td>9</td>
<td>3.7020</td>
<td>11</td>
<td>3.8007</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>3.6948</td>
<td>12</td>
<td>3.7936</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>3.7208</td>
<td>12</td>
<td>3.8195</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>3.6981</td>
<td>12</td>
<td>3.8454</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>3.7013</td>
<td>13</td>
<td>3.8486</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>3.7272</td>
<td>13</td>
<td>3.8744</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>3.7531</td>
<td>14</td>
<td>3.8517</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>3.7789</td>
<td>14</td>
<td>3.8776</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>3.7855</td>
<td>15</td>
<td>3.9286</td>
<td>15</td>
</tr>
</tbody>
</table>

Here i^*, optimal storage class at the end of the season; OF, objective function value. The seasonal inflow state, i, is 1.

Rabi season, which has negligible inflows. To accommodate the high inflows and reduce the spills in the ensuing Kharif season, the storage at the end of Rabi season tends to be low. The optimal end-of-season storage (i^*) is in class 1 for all combinations of k, i, and m, (table 4), thus enabling utilization of all available storage in the ensuing Rabi season. With i^* known, tracing back into the intraseasonal model solution gives the optimal 10-day irrigation allocations to each crop. In the present case study no provision was made for overyear storage.

CONCLUSIONS

An integrated model is developed for optimal reservoir operation for irrigation of multiple crops. The model consists of two modules: the intraseasonal allocation model (module 1) and the seasonal allocation model (module 2). The intraseasonal model (LP) solves for irrigation allocations for different crops within a season for a given state of the system, resulting in the maximized relative yield from all crops. The seasonal allocation model (SDP) solves for the steady state operating policy over the seasons for optimal expected relative crop yield over a year. Reservoir storage, inflow and rainfall in the irrigated area are considered as stochastic state variables. The model overcomes the limitations of an earlier study (Vedula and Mujumdar 1992) while providing improvements. The use of seasonal inputs coupled with the LP-SDP solution strategy facilitated this. The model is applied to the Malaprabha reservoir in Karnataka State, India.

REFERENCES

Table 3. Optimal steady state operating policy for the Kharif season

<table>
<thead>
<tr>
<th>Initial Storage State, (k)</th>
<th>Seasonal Rainfall State, (m)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i^*)</td>
<td>OF</td>
<td>(i^*)</td>
<td>OF</td>
<td>(i^*)</td>
<td>OF</td>
<td>(i^*)</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>3.7020</td>
<td>11</td>
<td>3.8007</td>
<td>12</td>
<td>3.8703</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>3.6948</td>
<td>12</td>
<td>3.7936</td>
<td>12</td>
<td>3.9118</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>3.7208</td>
<td>12</td>
<td>3.8195</td>
<td>13</td>
<td>3.8891</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>3.6981</td>
<td>12</td>
<td>3.8454</td>
<td>13</td>
<td>3.9150</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>3.7013</td>
<td>13</td>
<td>3.8486</td>
<td>14</td>
<td>3.9182</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>3.7272</td>
<td>13</td>
<td>3.8744</td>
<td>15</td>
<td>3.9055</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>3.7531</td>
<td>14</td>
<td>3.8517</td>
<td>15</td>
<td>3.9212</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>3.7789</td>
<td>14</td>
<td>3.8776</td>
<td>15</td>
<td>3.9443</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>3.7851</td>
<td>15</td>
<td>3.9285</td>
<td>15</td>
<td>3.9810</td>
</tr>
</tbody>
</table>

Here \(i^* \), optimal storage class at the end of the season; OF, objective function value. The seasonal inflow state, \(i \), is 1.

Rabi season, which has negligible inflows. To accommodate the high inflows and reduce the spills in the ensuing Kharif season, the storage at the end of Rabi season tends to be low. The optimal end-of-season storage \((i^*) \) is in class 1 for all combinations of \(k \), \(i \), and \(m \), (Table 4), thus enabling utilization of all available storage in the ensuing Rabi season. With \(i^* \) known, tracing back into the intraseasonal model solution gives the optimal 10-day irrigation allocations to each crop. In the present case study no provision was made for overyear storage.

CONCLUSIONS

An integrated model is developed for optimal reservoir operation for irrigation of multiple crops. The model consists of two modules: the intraseasonal allocation model (module 1) and the seasonal allocation model (module 2). The intraseasonal model (LP) solves for irrigation allocations for different crops within a season for a given state of the system, resulting in the maximized relative yield from all crops. The seasonal allocation model (SDP) solves for the steady state operating policy over the seasons for optimal expected relative crop yield over a year. Reservoir storage, inflow and rainfall in the irrigated area are considered as stochastic state variables. The model overcomes the limitations of an earlier study (Vedula and Mujumdar 1992) while providing improvements. The use of seasonal inputs coupled with the LP-SDP solution strategy facilitated this. The model is applied to the Malaprabha reservoir in Karnataka State, India.

REFERENCES

